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Circuits Using the Generalized Scattering Matrix
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Abstract—The dispersion characteristics of periodic circuits are
typically determined analytically using idealized circuit models.
Idealized circuit models exclude the effects that circuit asymme-
tries, such as those created by coupling ports, have on accurately
determining the system normal mode dispersion characteristics
for physically loaded periodic circuits. A new analytical disper-
sion analysis technique has been developed to accurately predict
the dispersion characteristics for loaded periodic circuits. The
loaded periodic circuit dispersion analysis problem is resolved
using the frequency dependent mode matching algorithm, which
yields regional normal mode scattering information for the circuit
in the form of the generalized scattering matrix (GSM). The GSM
is manipulated to determine the normal mode amplitudes for
each region of the periodic circuit, where the resulting regional
normal mode amplitude information is used to construct electro-
magnetic field maps for the length of the periodic circuit. Spatial
Fourier analysis of a frequency-dependent field map determines
the periodicity of the spatially dependent field. The resulting
frequency-dependent spatial Fourier harmonic information is
used to construct three-dimensional (3-D) and two-dimensional
(2-D) system normal mode dispersion diagrams for loaded pe-
riodic circuits. The 2-D and 3-D dispersion diagrams define the
phase, frequency, and relative amplitude characteristics of the
periodic circuit system normal modes excited by the coupling
ports. The system normal mode amplitude information defines
the relative level of excitation for a given mode in comparison to
other modes on the dispersion diagram.

1. INTRODUCTION

HE SYSTEM normal mode dispersion characteristics of
Tperiodic circuits are typically determined using idealized
models of the circuit [1]-{3]. Idealized models of periodic
circuits ignore the effects of coupling ports on the system
normal mode dispersion characteristics. Coupling ports inter-
rupt the periodicity of the circuit, causing field asymmetries
in the regions of the circuit local to the coupling ports. The
field asymmetries lead to frequency and phase shifts of the
loaded system normal mode dispersion characteristics from the
idealized system normal mode dispersion characteristics. The
perturbed system normal mode dispersion characteristics of a
finite length loaded periodic circuit are typically determined by
building a prototype of the circuit and measuring the dispersion
characteristics of the circuit [4]. The experimental data is then
used to iteratively modify the design of the hardware from
which the loaded periodic circuit is constructed to obtain the
desired dispersion characteristics. This approach results in an
empirical design for the hardware.
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A novel experimental technique to accurately measure the
system normal mode dispersion characteristics of finite length
loaded periodic circuits was previously developed and demon-
strated [2], [5]. The experimental technique uses miniature
minimally perturbing monopole antennas to spatially map
the frequency dependent vector electromagnetic fields for the
circuit. The resulting field maps are Fourier analyzed to deter-
mine the periodicity of the frequency dependent spatial field
maps. The frequency dependent Fourier harmonic information
for the circuit being analyzed is used to construct two-
dimensional (2-D) and three-dimensional (3-D) system normal
mode dispersion diagrams. This experimental technique yields
accurate system normal mode dispersion diagrams for mea-
sured circuits, but at the expense of constructing the hardware
to determine the dispersion characteristics. This technique is
still time consuming, costly, and is prone to error if the
miniature monopole antennas are not designed to minimize
field perturbations.

A new loaded finite length periodic circuit system nor-
mal mode dispersion design algorithm, however, has been
developed using an analytical field mapping technique to
calculate the complex vector electromagnetic vector fields for
any discretized location in a waveguide assembly forming
a periodic circuit. This is accomplished using the mode-
matching algorithm [2], [6], [7], [8]. Frequency-dependent
spatial electromagnetic field maps are obtained analytically
by manipulating the generalized scattering matrix (GSM)
determined from the mode matching algorithm to solve for
the regional normal mode amplitudes. The accuracy of the
complex electromagnetic field maps is dependent on the sum
of the normal modes used to model each region of the loaded
periodic circuit. The accuracy or convergence of the solution is
defined as the relative convergence (RC) criterion [2], [6], [9],
[10] for the mode matching algorithm. The resulting frequency
dependent spatial field maps are Fourier analyzed, from which
the 3-D and 2-D system normal mode dispersion diagrams for
the loaded circuit are created.

This analytic design tool for determining the dispersion
characteristics of a loaded finite length periodic circuit elimi-
nates the necessity of constructing hardware to measure the
dispersion characteristics of the circuit. The information is
obtained analytically, which reduces the design and con-
struction time for loaded periodic circuits and eliminates
costly dispersion design errors. Section II introduces the
analytical dispersion analysis algorithms developed using the
GSM for idealized infinitely periodic circuits, and for loaded
finite length period circuits. Section III presents a comparison
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Fig. 1.

between the idealized dispersion model and the loaded finite
length dispersion model for a highly overmoded eight-period
vane-type waveguide resonator. Section IV concludes and
summarizes this effort.

II. ANALYTICAL DISPERSION ANALYSIS USING THE GSM

The GSM determined using the mode matching algorithm
provides a generalized analytical tool for determining the sys-
tem normal mode dispersion characteristics for both idealized
infinitely periodic circuits [1]-[3] and for finite length loaded
period circuits {2], [5]. These two dispersion analysis methods
form complementary tools, where the idealized infinitely peri-
odic circuit dispersion model for a single period of the circuit is
used to design the prototype circuit configuration, and the finite
length loaded periodic circuit dispersion modeling technique
is used to design coupling ports for the loaded periodic circuit
to optimally excite specific system normal modes.

The two GSM dispersion analysis algorithms are demon-
strated using the eight-period linear vane-type waveguide
resonator shown in Figs. 1 and 2. The analysis process begins
by determining the system normal mode dispersion charac-
teristics for a single period of the eight period circuit using
the idealized circuit model [2], [3]. The circuit shown in
Figs. 1 and 2 is then analyzed to determine the dispersion
characteristics of the system normal modes excited by the two
coupling ports.

The GSM for a single period of the vane-type waveguide
circuit shown in Figs. 1 and 2 is represented in terms of the

Eight-period loaded finite length vane-type waveguide resonator configuration.

regional normal mode scattering variables (d1, b1, @2,b2) as

2 B

Floquet’s theorem [1] permits (1) to be manipulated into the
form of a Generalized Eigenvalue Equation [2], [3]
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where the eigenvalues define the system normal mode prop-
agation constants, I', = «, + jB,.. Equation (2) has been
previously used to analyze the system normal mode dispersion
characteristics for a single period of the circuit shown in
Figs. 1 and 2 [2], [3]. The idealized system normal mode
dispersion characteristics are shown in Fig. 3 in comparison to
experimental dispersion data determined using the resonance
technique [4] for the eight-period linear vane-type waveguide
resonator.

In general, the idealized dispersion analysis performed with
(2) is potentially in error due to the field asymmetries intro-
duced to the periodic circuit by the interruption of the circuit
periodicity with the coupling ports shown in Figs. 1 and 2.
The resulting field asymmetries can perturb the frequency
and phase response of the idealized system normal mode
dispersion characteristics shown in Fig. 3. Coupling ports
can also mutually excite multiple system normal modes. The
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Fig. 2. Isometric view of the eight-period loaded finite length linear
vane-type waveguide resonator shown in Fig. 1.
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Fig. 3. Idealized GSM dispersion diagram determined for the first passband

of the linear vane-type waveguide shown in Fig. 1.

ability to analytically determine the loaded system normal
mode dispersion characteristics is an important aspect of the
design phase for any periodic circuit configuration.

The loaded finite length periodic circuit dispersion analysis
algorithm is implemented using the frequency dependent mode
matching algorithm [2] to create complex vector electromag-
netic field maps for the finite length of the periodic circuit
shown in Fig. 1. This is accomplished by determining a
frequency dependent GSM for each frequency analyzed in
a defined frequency span for the entire circuit configuration
depicted in Fig. 1. Once the GSM for the entire circuit is
determined, then the regional forward and backward wave
scattering variable amplitudes are determined for each region
of a circuit. Generally, if a circuit is composed of N regions as
shown in Fig. 4, then @~ and @& are known, and b7 and b% are
determined from the GSM for the given circuit configuration.
If the scattering variable amplitudes are required for Region
N — 1, then a GSM is determined for the right (R) and
left (L) hand waveguide assemblies shown in Fig. 4. Simple
manipulation of the two GSM’s yields the Region N — 1
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Fig. 4. Arbitrary waveguide representation of a loaded finite length periodic
circuit for determining the Region IV — 1 regional normal mode: scattering
variable amplitudes.
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The solution of @%_, in (4) permits the solution of I_)%_l
by substituting @%,_, into (3). This procedure determines the
scattering variable forward and backward wave amplitudes for
Region N — 1.

This procedure is repeated for the remaining regions of the
circuit to determine the unknown scattering variable ampli-
tudes for each region of a finite length periodic circuit. The
regional normal mode forward and backward wave scattering
variable amplitudes are used to determine the complex elec-
tromagnetic field values for any location in the space occupied
by the entire waveguide circuit. The complex field values
are determined by summing the normal mode expressions as
a function of their forward and backward wave amplitudes
in each region of the circuit [2], [4], [6]. The appropriate
phase shift as a function of location in each region must be
included to ensure that the field value being calculated at each
location in the waveguide structure is properly represented.
The complex field value determined for a point in the periodic
circuit represents a point on the field map for the circuit being
studied. Field maps for a periodic circuit are created by sequen-
tially determining complex field values for discretized points
over the length of the circuit for the direction of propagation
through the circuit. The resulting frequency dependent spatial
field maps for the length of the periodic circuit are then Fourier
analyzed to determine the system normal mode phase and
frequency characteristics for the loaded finite length periodic
circuit being studied.

Field maps are determined for the length of the periodic
circuit for each frequency analyzed. Fourier analysis of each
frequency dependent field map yields a given Fourier harmonic
spectrum. Each Fourier harmonic corresponds to a given phase
shift for the periodic circuit being analyzed by defining the
number of periods over which the field maps were created,
and knowing the length of each period. The phase associated
with each Fourier harmonic is defined as

M
m2071a27"'a_— (5)
2
where M is the number of circuit periods over which the field
maps were created, and L is the period length in meters. The

index m is used to assign a phase to each spatial Fourier

8L = 27rm’
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harmonic. The circuit shown in Fig. 1 defines L = 0.292
in = 0.0074 m, and M = 8 for the eight-period circuit.
This information is sufficient to create a system normal mode
dispersion diagram from the Fourier harmonic information
determined by analyzing the frequency dependent field maps
created for a loaded periodic circuit.

[II. DISPERSION ANALYSIS OF A LOADED
VANE-TYPE WAVEGUIDE RESONATOR

Conventional TE*- and TM”-type modes are capable of
propagating on the loaded finite length vane-type waveguide
circuit shown in Fig. 1, as well as a host of hybrid modes [2],
[3]. In addition, surface wave modes [1], [2] can propagate on
the vane-type waveguide circuit forming passband characteris-
tics commonly associated with slow wave circuit applications.
The dispersion characteristics for these system normal modes
will now be examined by analytically mapping and Fourier
analyzing the frequency dependent vector electromagnetic
field components for the circuit shown in Fig. 1 using the
following regional normal mode expansion for the mode
matching algorithm.

The problem geometry shown in Fig. 1 has four regions
requiring the definition of a normal mode expansion. These
four regions are identified in sequence in Fig. 1 as the WR-
90, iris, slot, and vane waveguides where the periodic slot
and vane waveguide regions form the periodic circuit. The
WR-90 waveguide TE* regional normal mode indexes include
the m = 0,1,2,3,4,5,6 and n = 0,1,2,3, and the TM?
regional normal mode indexes are m = 1,2,3,4,5,6 and
n = 1,2,3. The iris waveguide TE® regional normal mode
indexes include m = 0,1 and n = 0,1, and the TM”
regional normal modes indexes are m = 1 and n = 1.
The slot waveguide TE® regional normal mode indexes are
m = 0,1,2,3,4,5,6 and n = 0,1,2,3,4,5,6,7 modes,
while the TM? regional normal mode indexes include the
m = 1,2,3,4,5 and n = 1,2,3,4,5,6,7 modes. The vane
waveguide TE® regional normal mode indexes include the
m =0,1,2,3,4,5,6 and n = 0,1,2,3,4,5, modes, and the
TMZ regional normal mode indexes are m = 1,2,3,4,5,6
and n = 1,2,3,4,5. This regional normal mode expansion
is sufficient to satisfy the RC criterion for the system normal
modes over the 6.5-10.5 GHz frequency span for the first
slow-wave mode passband depicted in Fig. 3.

The system normal mode dispersion analysis is performed
using discretized F, field data over the length of the vane-
type waveguide resonator periodic circuit shown in Fig. 1 for
a frequency span of 6.5-10.5 GHz using 101 frequencies. The
E, field component for the eight-period circuit is discretized
using 601 data points at a cross section dimension for the first
region of the periodic circuit of z = 0.443 in, y = —0.296
in. The ploiting line is 5 mils below the vane tips, forcing
E, to be approximately zero across the vane tips if the
boundary conditions are satisfied with the regional normal
mode expansion. The resulting 3-D system normal mode
dispersion diagram for the eight-period circuit is shown in
Fig. 5, and the corresponding 2-D contour plot dispersion
diagram is shown in Fig. 6. The low harmonic amplitude
information displayed in Fig. 5 is more clearly displayed
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Fig. 5. Three-dimensional system normal mode phase and frequency charac-
teristics for the eight-period loaded finite length linear vane-type waveguide
resonator shown in Fig. 1.
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Fig. 6. Two-dimensional system normal mode phase and frequency charac-

- teristics for the eight-period loaded finite length linear vane-type waveguide

resonator shown in Fig. 1.

as a logarithmic plot shown in Fig. 7. Careful inspection
of Figs. 5 and 7 reveals the presence of several transverse
ridges for the 3-D dispersion diagram. The GSM dispersion
diagram for the infinitely periodic vane-type waveguide shown
in Fig. 3 is overlaid on the 2-D contour plot. dispersion
diagram shown in Fig. 6, where the system normal modes
responsible for these transverse ridges are readily identified.
This data visualization technique permits the idealized analytic
model used to determine the system normal mode phase and
frequency characteristics for the infinitely periodic circuit to be
directly compared to the information determined by spatially
Fourier analyzing the field maps for the finite length periodic
circuit.

Inspection of Fig. 3 indicates that there are nine resonances
associated with the first slow wave system normal mode pass-
band between 6.5 and 10.5 GHz. The circuit being analyzed is
eight periods in length; Fourier analysis of the field maps for
these resonances determines the respective amplitudes of the
various Fourier harmonics. The 7 /8-mode, 37 /8-mode, 57 /8-
mode, and 77/8-mode are defined as odd-order harmonics,
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TABLE I
COMPARISON OF THE SYSTEM NORMAL MODE PHASE AND FREQUENCY CHARACTERISTICS
ANALYTICALLY DETERMINED USING FiGS 5-7 WITH THE EXPERIMENTAL DATA PRESENTED IN FIG. 3

analytically determined experimentally determined percentage

system normal mode system normal mode error

resonance frequency resonance frequency between Figs.
mode identifier determined from Fig. 6 determined from Fig. 3 3and 6
7-mode 10.300 GHz 10.305 GHz 0.05 %
Tn/8-mode 10.220 10.213 0.07
3n/4-mode 10.100 10.109 0.09
Sn/8-mode 9.900 9.911 0.1
n/2-mode 9.620 9.629 0.09
T™; 4 9.500 9.491 0.09
3n/8-mode 9.020 9.028 0.09
EHy1, 8.860 8.853 0.08
EHy14 8.660 8.642 0.2
7/4-mode 8.020 8.018 0.02
7/8-mode 7.100 7.109 0.1
0-mode 6.660 6.6682 0.1

Harmonic Magnitude, dB

Fig. 7. Logarithmic 3-D system normal mode phase and frequency charac-
teristics for the eight-period loaded finite length linear vane-type waveguide
resonator shown in Fig. 1.

while the 0-mode, 7/4-mode, 7 /2-mode, 37 /4-mode, and =-
mode are defined as even-order harmonics. Fundamentally,
the 0-mode corresponds to the excitation of the zeroth Fourier
harmonic, the 7/4-mode corresponds to the excitation of the
first harmonic, the 7/2-mode corresponds to the excitation
of the second harmonic, the 37 /4-mode corresponds to the
excitation of the third harmonic, and finally the w-mode
corresponds to the excitation of the fourth harmonic. Each
mode defined as corresponding to an even-order harmonic
is divisible by two, yielding an integer representation of the
dominant Fourier harmonic excited by the mode. The modes
defined by odd-order harmonics, however, are not divisible
by two, which leads to the excitation of asymmetrical Fourier
harmonics for these modes. This concept is demonstrated in
the following system normal mode analysis.

The system normal mode resonances for the first passband
of the periodic circuit dispersion characteristics displayed in
Fig. 3 are discussed individually. The resonances are individu-

ally field mapped and spatially Fourier analyzed to assist with
identifying which system normal modes are being excited with
the coupling port geometry depicted in Fig. 1. The analytically
determined system normal mode phase and frequency charac-
teristics for each resonance displayed in Fig. 5 are compared
in Table I with the experimental dispersion data presented in
Fig. 3.

The peak at 10.3 GHz shown in Fig. 6 corresponds to
the excitation of the system normal mode w-mode, which
corresponds to a zero group velocity for the first passband
of the circuit on the dispersion diagram. The field map
for this mode is shown in Fig. 8 followed by the Fourier
harmonic spectrum in Fig. 9. The 7-mode is an even-order
harmonic, which leads to the excitation of the fourth Fourier
harmonic shown in Fig. 9. The 7-mode for this circuit has been
experimentally determined to occur at 10.305 GHz, yielding
a 0.05% error between the analytical dispersion information
presented in Fig. 6 and that obtained experimentally.

It is interesting to note that the 7w-mode field map shown in
Fig. 8 appears to be decaying in amplitude over the length of
the circuit. The 7-mode occurs at the upper passband cutoff
frequency, forcing the slow-wave system normal mode to be
cutoff for higher frequencies. Therefore, as the wave is being
cutoff or is becoming evanescent, then a longer wavelength
component is superimposed on the short wavelength mode.
This is illustrated by extending the eight-period circuit to
24 periods in length, where the field map for the 24-period
circuit is illustrated in Fig. 10. A long wavelength component
is superimposed on the 7-mode field map indicating that this is
not the exact frequency for the w-mode. The exact frequency
for the 7-mode will yield an evanescent or decaying field
profile for the length of the circuit, demonstrating that the
slow-wave mode has achieved the cutoff phenomenon.

The remaining resonances for the first passband of the
periodic circuit shown in Fig. 1 have been analyzed using the
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Fig. 8. w-mode Re(E.) field map for the eight-period loaded finite length
linear vane-type waveguide resonator shown in Fig. 1.
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Fig. 9. Fourier harmonic spectrum for the w-mode Re(E. ) field map shown
in Fig. 8.

E, field map data and associated Fourier harmonic spectram
demonstrated for the analysis of the 7-mode. The results of this
analysis are summarized in Table I, which are briefly discussed
in the following text.

The next ridge at 10.22 GHz is related to the 77/8-mode.
The 77/8-mode is an odd order harmonic, leading to the
excitation of the third and fifth Fourier harmonics. This ridge is
followed by a ridge at 10.1 GHz for the 37 /4-mode. The 37 /4-
mode is an even-order harmonic, which leads to the excitation
of the third and fifth Fourier harmonics. The 57 /8-mode is an
odd-order harmonic occurring at 9.9 GHz, which excites the
second and third Fourier harmonics. The ridge at 9.62 GHz is
related to the excitation of the = /2-mode. The 7/2-mode is an
even-order harmonic, leading to the excitation of the second
and sixth Fourier harmonics.

The following frequency span for the circuit illustrates the
ability of the circuit to simultaneously propagate surface wave,
hybrid wave, and classical waveguide system normal modes.
The two GSM dispersion algorithms are able to analyze this
family of mixed mode types. The TM; ;1 mode is excited
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Fig. 10. #-mode Re(E. ) field map for a 24-period loaded finite length linear
vane-type waveguide resonator.

at 9.5 GHz followed by the 3w/8-mode at 9.02 GHz. The
3n /8-mode is an odd-order harmonic leading to the excitation
of the first and second Fourier harmonics. The EH; ; » mode
is excited at 8.86 GHz. Similarly, the ridge at 8.66 GHz is
related to the excitation of the EHy ; ; resonator mode with
the coupling port geometry. The EH; ; ; and EH, ; » modes
are unique hybrid modes for corrugated waveguide structures.

The ridge at 8.02 GHz is related to the excitation of the
7 /4-mode. This region of the dispersion diagram corresponds
to the point of divergence for the TET ; mode from the slow
wave system normal mode associated with the 7/4-mode.
The diverging dispersion lines for these two modes can cause
passive coupling or energy to be mutually exchanged between
the modes, which has been addressed by Johnson [4]. The
7 /4-mode is an even order harmonic, leading to the excitation
of the first and seventh Fourier harmonics.

The next ridge at 7.1 GHz corresponds to the excitation of
the = /8-mode. The 7 /8-mode is an odd-order harmonic, which
excites the first and eighth Fourier harmonics. Finally, the
transverse valley shown at the bottom of Fig. 7 corresponds to
the lower cutoff frequency of the first passband 0-mode shown
in Fig. 3. The bandpass cutoff of the 0-mode corresponds to
the cutoff frequency of the vane-type waveguide slot mode.
The first passband slot mode is comparable to a TE; o mode
propagating in the slots or corrugations forming the resonator,
where cutoff is theoretically determined [2], [3], [11] to occur
at 6.6682 GHz.

This demonstration using the two analytic methods for
determining the system normal mode phase and frequency
characteristics of an infinitely periodic circuit, in conjunction
with the spatial Fourier analysis algorithm for a finite length
periodic circuit, demonstrates the ability of both techniques to
produce accurate dispersion information for periodic circuits.
These new dispersion analysis techniques form complementary
tools. The GSM dispersion algorithm for infinitely petiodic
circuits [2], [3] determines the classical system normal mode
dispersion information, and the spatial field mapping and
Fourier analysis algorithm [2] provides a means to explore
the excitation of system normal modes with the input and
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output port geometries for the circuit under study. The use
of both dispersion analysis algorithms provides a method
for understanding circuit anomalies causing interference and
power loss for specific circuit applications. These two new and
powerful dispersion analysis tools are used to resolve a variety
of problems associated with the propagation and excitation of
various system normal modes for periodic circuits.

IV. CONCLUSION

This paper has presented a new analytical method for
determining the system normal mode dispersion characteristics
of a finite length periodic circuit as a function of load-
ing. Vector electromagnetic field mapping techniques were
analytically determined using the mode matching algorithm.
The resulting field maps were submitted to a spatial Fourier
analysis algorithm, where each field map for the circuit was
analyzed to determine the spatial Fourier harmonic content.
The frequency dependent harmonic information was used to
construct a new 3-D and 2-D dispersion diagram for the
circuit being analyzed. The new dispersion diagrams present
the common frequency and phase information, but also display
the amplitude of each harmonic being excited by the coupling
port geometry for the periodic circuit.

The resulting dispersion relations for the finite length and
the infinitely periodic circuits form complementary analysis
tools for the design of loaded periodic circuits. The classical
system normal mode dispersion relationship determined from
the GSM using Floquet’s theorem accurately defines the
dispersion characteristics for all of the modes capable of
being excited over a designated frequency span. Similarly,
the finite length periodic circuit 3-D dispersion diagram and
accompanying 2-D contour map dispersion diagram were used
to define which system normal modes were being excited and
propagated on the finite length periodic circuit by the defined
coupling port geometry. Overlaying the infinitely periodic
circuit dispersion diagram on the finite length periodic circuit
2-D contour map dispersion diagram permits clear definition
of which system normal modes are being excited by the
periodic circuit coupling port geometry. Dispersion errors less
than 0.2% were demonstrated for a loaded linear vane-type
waveguide resonator by comparing dispersion data obtained
experimentally with analytical dispersion data obtained using
the analytic field mapping and spatial Fourier analysis disper-
sion algorithm. The modes excited for this circuit included
slow wave, hybrid, and classical waveguide system normal
modes for the given periodic circuit geometry.

In summary, a new analytic tool has been developed to
aid with designing and developing complex periodic structures
using the mode matching algorithm. The vane-type waveguide
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has been the circuit of choice to demonstrate these efficient
tools for predicting the system normal mode dispersion charac-
teristics for loaded finite length and infinitely periodic circuits.
These new analytic tools offer significant enhancements over
historical analysis tools. The new dispersion analysis tools will
serve to significantly reduce the design and development time
for periodic circuits in industrial or laboratory applications,
leading to substantial cost savings using these new design
algorithms.

REFERENCES

[1] R. M. Bevensee, Electromagnetic Slow Wave Systems. New York:
Wiley, 1964.

[2] W. S. Best, “Dispersion analysis of the loaded vane-type waveguide
using the generalized scattering matrix,” Ph.D. dissertation, Univ. of
Utah, Dept. of Electrical Engineering, Salt Lake City, UT, Mar. 1996.

{31 W.S. Best, R. J. Riegert, and L. C. Goodrich, “Dispersion analysis of
the linear vane-type waveguide using the generalized scattering matrix,”
IEEE Trans. Microwave Theory Tech., vol. 43, no. 9, pp. 2101-2108,
Sept. 1995.

[4] C.C. Jobnson, Field and Wave Electrodynamics.
Hill, 1965.

[5S] W.S. Bestand T. A. Treado, “‘Rotary probe measurements of a crossed-
field amplifier slow wave circuit,” in Proc. IEEE Electron Device Society
Meet., San Francisco, CA, Dec. 1990.

[6] T. Itoh, Numerical Techniques for Microwave and Millimeter-Wave
Passive Structures. New York: Wiley, 1989.

[71 G. L. James, “Analysis and design of TE;1-to-HE;; corrugated cylin-
drical waveguide mode converters,” IEEE Trans. Microwave Theory
Tech., vol. MTT-29, no. 10, pp. 1059-1066, Oct. 1981.

[8] H. Patzelt and F. Arndt, “Double e-plane steps in rectangular waveguides
and their application for transformers, irises, and filters,” IEEE Trans.
Microwave Theory Tech., vol. MTT-30, no. 5, pp. 771-776, May 1982.

[91 R. Mittra, T. Itoh, and T.-S. Li, “Analytical and numerical studies of the

relative convergence phenomenon arising in the solution of an integral

equation by the moment method,” IEEE Trans. Microwave Theory Tech.,

vol. MTT-20, no. 2, pp. 96-104, Feb. 1972.

R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided

Waves. New York: Macmillan, 1971.

D. R. Gunderson and R. W. Grow, “A theoretical and experimental

investigation of the feasibility of constructing high power two-millimeter

backward-wave oscillators using ladder and vane-type slow-wave struc-
tures,” Tech. Rep. AFAL-TR-69-259, Air Force Avionics Laboratory.

Air Force Systems Command, Wright-Patterson Air Force Base, OH,

Oct. 1969.

New York: McGraw-

[10]

[11]

W. Scott Best (S*79-M’80). for photograph and biography, see p. 2108 of
the September 1995 1ssue of this TRANSACTIONS.

Ronald J. Riegert, for photograph and biography, see p. 2108 of the
September 1995 issue of this TRANSACTIONS.

Lewis C. Goodrich, for photograph and biography, see p. 2108 of the
September 1995 issue of this TRANSACTIONS.



